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Abstract: The generalized van der Pol equation is often used for description of various effects originating in
the aero-elasticity of large slender engineering structures. This applies mainly to the quasiperiodic beatings
that can be encountered especially in lock-in regimes when the vortex frequency becomes close to the structure
eigenfrequency with a small detuning. The current paper presents numerical analysis of influence of the sub-
or superharmonic excitation on the character of the response of a generalized van der Pol oscillator. This
way it complements two previous papers of the authors dealing with stability analysis of certain types of the
stationary periodic or quasiperiodic response of the system under study.
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1. Introduction

Interaction of the air stream and large slender engineering structures gives rise to a wide spectrum of the
non-linear aero-elastic processes. Namely the beating effects emerging in relation with vortex shedding rep-
resent a category which is dangerous of the functionality and safety of the structure. This applies mainly to
the quasiperiodic beatings that can be encountered especially in lock-in regimes when the vortex frequency
becomes close to the structure eigenfrequency ω0 with a small detuning. However, due to non-linear char-
acter of the underlying physical system, the effect of sub- or superharmonic synchronization can be encoun-
tered. In this mode also the close proximity of integer multiples or fractions of the driving frequency and the
eigenfrequency of the structure can cause undesired or even dangerous effects. The quasiperiodic phenom-
ena of the basic aero-elastic model resonance and their stability properties were theoretically investigated
by the authors in the past (Náprstek and Fischer, 2018a). The recent study of the authors (Náprstek and Fis-
cher, 2018b) concentrates on the stability assessments of the sub- or superharmonic synchronization and its
effect on the free component of the system response. The both works use the harmonic balance method for
analytical investigation and their results depend on the fulfilment of the relevant assumptions. The current
paper present selected and illustrative results of a thorough numerical study of the same model subjected to
a wide range of excitation modes covering the subharmonic, resonant and superharmonic excitation.

The commonly used Single-Degree-of-Freedom (SDOF) or the more complicated Two-Degree-of-Freedom
(TDOF) section models of a structure in the air stream represent a reasonable compromise between com-
plexity and ability to characterise the dynamic processes. Such type of models is used often in the aerody-
namic wind tunnel experiments and well serve their purpose. However, it appears that in many cases when
the TDOF model is used, one of the components is dominant and, thus, the second one can be neglected.
It reveals that majority of the resulting SDOF systems can be modelled by the van der Pol-Duffing or gen-
eralized van der Pol type equations or their combination adjusting degree of individual non-linear terms or
their coefficients. This hypothesis was confirmed many times and is generally accepted, see, e.g., (Koloušek
et al., 1984).
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Prosecká 76, 190 00 Prague 9, tel. +420 225 443 310, e-mail fischerc@itam.cas.cz
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Fig. 1: Courses of maximal (upper curve, blue) and minimal (lower curve, yellow) amplitudes A given by
the harmonic balance method in Eq. (3) for four values of the excitation amplitude P = 0.125, 0.25, 0.5, 1 .

2. Mathematical model

The behaviour of the structure in the stream can be characterized by means of the generalized van der Pol
equation with a harmonic right hand side. The generalization consists in an inclusion of the fourth order
term in the damping. This way it is possible to describe both of the most important limit cycles, where the
first is stable (attractive) and the second unstable (repulsive). Consequently, the governing equation reads:

ü− (η − νu2 + ϑu4)u̇+ ω2
0u = Pω2 cosωt (1)

where u is the response of the system; ω2
0 = K/m is the eigenfrequency of the associated linear system

with stiffness K and concentrated mass m; η, ν, ϑ are positive coefficients of linear viscous and non-linear
damping; ω2P is the amplitude of the harmonic excitation (excitation force per unit mass, frequency ω). P
can be interpreted as an amplitude of pressure variation during vortex shedding.

Supposing the stationary response, i.e., the state when the transient time elapses and the influence of initial
conditions vanishes, the response can be expected to have the harmonic form with slowly varying amplitude
U and phase shift ϕ:

u = U cos(ωt+ ϕ) . (2)

Employing the harmonic balance procedure, the differential system for U and ϕ as functions of the ”slow
time” can be deduced:

Ȧ =
η

2
A(1−A2 + 2γA4)− η

2
Qω sinϕ, (3a)

ϕ̇ = ∆− η

2A
Qω cosϕ, (3b)

where
∆ =

ω2
0 − ω2

2ω
≈ ω0 − ω, A2 =

1

4

ν

η
U2, γ =

ϑη

ν2
, δ2 =

∆2

η2
, Q2 =

νP 2

4η3
.

For the detailed derivation of Eq. (3), the reader is kindly referred to the earlier publication (Náprstek and
Fischer, 2018a). It is clear from the structure of the harmonic balance procedure that the average amplitudes
given by Eq. (3) cannot reflect higher harmonic modes than that given by the ansatz Eq. (2), cf. Fig. 1.

It suggests itself to use the same technique also for identification the sub- and superharmonic properties of
the response. However, it appears that the straightforward application of the harmonic balance procedure
does not lead to relevant results in this case. Indeed, assuming generalization of the Eq. (2):

u = U cos(nωt+ ϕ) . (4)

for n = 2, 3 . . . and n = 1/2, 1/3, . . ., the harmonic balance leads to a set of identical expressions for the
amplitude and slightly different relations for the phase shift. Regarding A, the expression common for all
cases represents the asymptotically constant amplitude A for γ <= 1/8 and diverging otherwise and reads

Ȧ =
η

2
A(1−A2 + 2γA4) . (5)

The resulting formulas for the phase shift ϕ for all cases indicate that ϕ are evenly increasing in time with
velocities depending on n. The individual expressions are given in Table 1.
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Fig. 2: Numerically obtained resonance curves of the generalized van der Pol equation Eq. (1) for four
values of the excitation amplitude P = 0.125, 0.25, 0.5, 1. Blue and yellow curves show the maximal and
minimal amplitudes, respectively.

It is clear that the apparently existing sub- or superharmonic effects (cf. Fig. 2) have to be modelled using
other approaches. The theoretical aspects of this topic are in greater detail discussed in the recently submit-
ted paper (Náprstek and Fischer, 2018b). The present work will continue by showing the problem from the
numerical perspective.

3. Numerical evaluation

The numerically obtained (non-linear) resonance curves of the Eq. (1) for different settings of the excitation
amplitude P are shown in Fig. 2. Values of the other parameters used in simulations are η = 1, ν = 0.5, ϑ =
0.025 ⇒ γ = 0.1; ω0 = 1. The integration was performed using the M = 2 variant of the implicit Gear
method implemented as the routine gear2 of the GNU Scientific Software Library (Galassi et al., 2009)
and as the default method of the NDSolve command in Wolfram Mathematica v. 11. The non-stationarity
of the response is shown in each plot using two curves; the upper and the lower curve represent maximal
and minimal values of the envelope of the response, respectively. The system is stationary if both curves
coincide. This way it is visible in Fig. 2 that the response is stationary close to the resonance (for ω ≈ ω0)
and for lower values of P also for odd superharmonic frequencies, i.e., for ω below 3ω0 and 5ω0. The effect
is better visible in the detailed plots in Fig. 3 where three stationary intervals are shown in the zoomed
graphs for all driving amplitudes.

Presence of the stationary response in the vicinity of the resonance ω0 = 1 is natural and is theoretically jus-
tified in the earlier publication (Náprstek and Fischer, 2018a). Its width and location depends on parameters
of the structure. Fig. 2 and the upper left plot of Fig. 3 show dependence of the excitation amplitude P and
width of the stationary area. Namely, the width of the stationary area increases with increasing excitation
amplitude.

The assumed simple harmonic form of the solution Eq. (2) which is used in the paper (Náprstek and Fis-
cher, 2018a) cannot comprise higher or lower harmonics of the response. However, the numerical resonance
curve in Fig. 2 and the zoomed plots in Fig. 3 show changes of the response character in the neighbourhood
of the superharmonic frequencies. Small irregularities are visible for ω = 1/2, 2 or 4, but the apparently
stationary character of the response is present for ω = 3 and 5. With increasing excitation amplitude, the
width of the stationary areas increases but at the same time their number lowers. The non-stationary re-
sponse exhibits the beating effects, where the beating frequency decreases to zero in the stationary areas
and increases with increasing distance of the driving frequency from the (super) resonance frequency. How-
ever, starting from a certain detuning (distance from the resonance), the numerically identified period of the
response starts to behave irregularly and is hard to correctly interpret.

Tab. 1: Values of the phase shift ϕ for selected sub-/superharmonic components of the response

n = 2 n = 3 n = 4 n = 1/2 n = 1/3 n = 1/4

ϕ̇ = 1
2∆− 3

4ω
1
3∆− 4

3ω
1
4∆− 15

8 ω 2∆ + 3
4ω 3∆ + 4

3ω 4∆ + 15
8 ω
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Fig. 3: Detailed plots of the stationary zones for the resonance frequency ω0 = 1 (ω ∈ (0.8, 1.2), top left)
and two superharmonic stationary zones: ω ∈ (2.7, 3.1), top left and ω ∈ (4.75, 5), bottom left

4. Conclusions

The SDOF non-linear system described by the generalized van der Pol equation has a particular importance
in the field of engineering mechanics. This equation describes the state when the total linear damping
component drops below zero and only non-linear effects are able to stabilize the system. It is able to
characterize the reduced flutter as one of the post-critical response types of an aero-elastic system. An
attempt to describe the higher and lower harmonics of the generalized van der Pol equation using the
harmonic balance procedure proved inapplicable. The numerical solution was performed and its selected
resonance properties were identified as a supplement to the approximate analytical treatment which was
published by the authors in the past. The response is generally characterised by the beating character,
however, for certain excitation frequencies is the response stationary. The analysis in this communication
is presented for a single value of the damping parameter and thus it serves for illustrative purposes only.
However, it indicates open questions and necessity to use a more sophisticated approach.
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